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1. INTRODUCTION.

If F is a probability distribution such that F(O-) 0 and

s xrdF(x) = r < CO, and if r,t > 0, then according to Markov's
O-

inequality,

117/tr, t ý ýLr

0 <1 - F(t-) (I.1)

i, t <- r"

This inequality is known to be sharp; indeed, for each positive r and t

there exist distributions satisfying the conditions of (1.1) and attaining

equality.

A number of improvements of (1.1) have been obtained under additional

assumptions about the distribution F. Perhaps the most notable of these

is the result of Gauss (1821) which applies in case 1 - F(x) is convex

in x > 0, and predates any version cf (1.1). Hypotheses similar to

that of Gauss have been used by a number of authors to obtain improve-

ments; much of this work has been summarized by Fr6chet (1950). Improve-

ments of the classical bounds were studied by Mallows (1956) under restric-

tions on the number of sign changes of some derivative of the distribution,

and also with restrictions on the size of the derivative. This work

extends the result of Gauss as well as that of Markov (1898) which utilized

bounds on the density. Recently, Mallows (1962) has extended his earlier

work, as well as the results and methods of Krein (1951), to obtain

inequalities on distributions havilng n specified moments and whose

first s derivatives satisfy certain boundedness and sign change conditions.
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In this paper, we obtain sharp upper and lower bounds for 1 - F(t-)

under a variety of conditions, particularly that the hazard rate is mono-

tone. These conditions are of interest for two reasons: First, they

are sufficient to yield quite striking improvements of (1.1), and second,

they are natural to many situations in life testing, reliability, actuarial

science, and other areas of statistical interest.

A distribution F is said to have increasing (decreasing) hazard

rate, denoted by IHR(DHR), if logrl - F(x)] is concave where finite

(convex on [O,co)). If F has a density f, then the ratio

q(x) = f(x)/[l - F(x)]

is defined for F(x) < 1, and is called the hazard rate. It is easily

seen that log[l - F(x)] is concave (convex) in x > 0 if and only if

q(x) is increasing (decreasing) in x > 0.

The practical interest of the hazard rate derives from its probabi-

listic interpretation: If F is a life distribution, then q(x)dx may

be regarded as the conditional probability of death in (x,x + dx) given

survival to age x.

The property of monotone hazard rate is connected with the theory

of total positivity in the following way. A distribution F is IHR if

and only if 1 - F(x - y) is totally positive of order 2 in real x and

y (see Schoenberg (1951) for a definition of terms). A distribution F

is DHR if and only if 1 - F(x + y) is totally positive of order 2 in

x + y 0 0. Properties of distributions with monotone hazard rate have

been investigated by Barlow, Marshall and Proschan (1963).

iI



We pay particular attention to the question of sharpness of the

inequalities given, and to the conditions for equality. Examples

attaining equality serve not only to prove sharpness, but also indicate

what stronger assumptions may yield a further improvement of the inequality.

For if a property is enjoyed by a distribution attaining equality, then

the assumption of that property cannot result in further improvement.

Where uniqueness of a distribution attaining equality can be shown, then

of course strict inequality holds in all other cases.

The statement of (1.1) for r > 0 is in reality no more general

than its statement for r = 1. This is because of the fact that for

r = 1, (1.1) may be written in the form

P(X_> t] < •/t

where t = E(X). With X = yr, one then obtains (1.1) for arbitrary

r > 0. The results of this paper cannot be so simply extended, because

the property of monotone hazard rate need not be preserved under a trans-

formation of the form X = Yr.

Throughout this paper we assume unless otherwise stated that distri-

butions are right continuous.
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2. METHCDS OF PROOF.

If X is a random variable satisfying p[XeI] = 1 and certain

moments of X are known, there is a standard method for obtaining a

sharp upper bound for the probability that X lies in some specified

set !C I. If & is the class of polynomials h(x) = Za where

(i) aj = 0 unless the jth moment of X is known, and (ii) h(x)

dominates the characteristic (indicator) function of / on I, then

P(X, < inf Eh(X) (2.1)

(see Marshall and Olkin (1961) for a more general discussion). The

usual proof of Markov's inequality (1.1) is of this form where the

minimizing polynomial is xr/tr.

This proof of Markov's inequality does not seem adaptable to the

case in which other kinds of information are available about the distri-

bution F. We consider an alternate proof based upon the following

lemma: If C is an increasing function on [0,-) and GIG 2 are

probability distributions satisfying Gl(x) < G2 (x) for all x, then

S C(x)dGl(x) > (x)dG2(x). (2.2)
0- 0-

To apply this, observe that

1, x< 0
1 - F(x) 1 - G(x) = 1 F(t-), 0 < x < t (2.3)

x t.
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Then since xr/tr is increasing in x,

c r c r
t-•r= S dF(x) 0 S -dG(x) = 1 - F(t-).

Some kinds of information about F readily yield a sharpening of (2.3)

with consequent improvement of (1.1), and we illustrate with two simple

examples.

Example 2.1. If F(x) is convex in (O,t), then

1I xF(t-)/t, x < t

1 F(x) t
0, x >t.

Using this, one obtains

1 - F(t-) <_ (2.4)

an improvement of (1.1) due to Narumi (1923).

Example 2.2. If 1 - F(x) is convex, x >_0 (e.g., if F is the

distribution of a random variable X = IYI where Y has a density with

unique mode at 0), then 1 - F(x) has a supporting line at t > 0,

so that there exists a < 1 such that

1, x < 0
1 - F(x) >_ + [1 - F(x) - a]x/t, 0 < x < at/[a - 1 + F(t)] (2.5)

10, x > at/[a - 1 + F(t)].

Thus for some a < 1, ir ý (at)r+i/(r + l)t(a - 1 + F(t))r, or

1 - F(t) < a - a1+1/rt/(r + )l/r

rI
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Though we have no way of obtaining a to satisfy (2.5), we do obtain a

valid bound by maximizing 4(a) for a < 1. This maximum occurs at

= r/r + 1-1/r if t r/r(r + 1)1-1/r = t0 , and at a = 1

if t•< to. Thus

1 - tl(r + i) /rl/' t <_ to

1 - F(t) _ (2.7)

S[,tr [rl(r + 1 )]r t Ž to.

This result was obtained by Camp (1922) and Meidell (1922). For r = 2,

it is essentially equivalent to Gauss' result of 1821, and the method of

the above proof is due to Gauss.

The method of Example 2.2 has the disadvantage of providing no

inequality unless the problem of maximizing c can be solved; this is

in contrast to the method utilizing (2.1), where a valid bound is provided

by any h satisfying (i) and (ii).

We use a third method in Sections 4 and 5, which may be described

as follows. Let I be a family of probability distributions. Call

C Y extremal for S on T if for each teT and Fe ,

there exists GeA such that F(t) = G(t). If . is extremal for 9:

and Fe , then clearly

inf G(t) < F(t) < G(t) .

If the family A is sufficiently small, the bound may not be difficult

to obtain. This method has been used by Royden (1953) and Mallows (1956).
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Our proofs that A is extremal involve a parameterization of •.

-. = fG.:aeI3. We single out a crossing of F and G., and show

that this crossing must occur at each teT as a ranges over I.

Although this is conceptually simple, it is usually difficult to rigorize.

Example 2.3. Let 9ý be the class of distributions F where F is

convex on its interval of support and satisfies F(O) = 0, S xdF(x)
0-

Let G = fGa:O < a < ýLi, where

0, x< <a

a 77X a - I
1, x > 211 a.

Suppose that Fe 9 . Then F and G have atmost two crossings. It

is not difficult to see graphically (we make no attempt at a rigorous

proof) that the first crossing must range over the interval T = [0,pI]

as a ranges over the same interval. For 0 < t < j.l, we compute

sup G,(t) G0 (t) =t/24 1

and conclude that

F(t) < t/24I1 , t < Ii. (2.8)

We mention two other useful methods. Inequality (3.8) can be obtained

by an application of Jensen's inequlaity, as can (2.7) in case t < tO.

Finally, we give another proof of (1.1) which, suitably modified, yields

a simple proof of (3.10). The distribution G defined by

1, x <O

1 - G(x) = r1 tr, 0 < x < t

0, x t



has rth moment 'r- S xrdF(x). Hence F and G must cross at
0-

least once; such a crossing can occur only in the interval (O,t),

and thus

I - F(t-) •_ 1 - G(t-) = ý'tr.

The ideas of this proof are also useful in Section 4, where more than

one moment is known.



3. BOUNDS FOR 1 - F WHEN F HAS MONOTONE HAZARD RATE,

We introduce this section with some general lemmas that are later

applied to obtain more specific results.

Let t > 0

ww(x) xi,
I t-z>

and let

1-G(x) = 1 - G )(x)Gz z~-(t-) "

Lemma 3•1 . Let F be IHR, F(O) = 0. Let C be a function

strictly increasing on [0,a ) such that I f(x)dF(x) = v exists
0

finitely. Then

*(w) = sup f c(x)dG z;w(x)
O<z<t 0

is strictly increasing, and if *(1 - F(t -)) < ®

1 - F(t -) >

1 0 ,(t) > v ,(3.1)

where #-l v) = sup {w:*(w) < v ) .

Proof. Note that G zw(x) is decreasing in w for fixed x and z.

Since C is strictly increasing, this means C L(x)dG z;w(x) is

strictly increasing in w, so *(w) is strictly increasing. Since

*(0) : 1(t), 4-(v) is defined when C(t) < v
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Since log[l - F(x)] is concave, there exists zo, 0 < zO • t

such that F(x) > G (x) for all x. Since • is increasing,--z0

OD OD aD
v C j(x)dF(x) < 4 C(x)dGo(x) < sup JO •(x)dG (x) = ((l - F(t -)) (3.2)

0 _<~ 0

and (3.1) follows, iI

Note that no use was made of the condition F(O) = 0 other than

to confine z 0 to [O,t] rather than (- aD ,t].

Lemma 3,1'. If C(t) < v and * is continuous at v, equality is

attained in (3.1) uniquely by the distribution G W (x), where
z*;- (v)

aD CD
z* is defined by . C(x)dG (x) = sup f C(x)dG - x).

0 z*-l V) ztz<t z (V)

If ((t) > v and C(s) = v has a solution, then,e.g., the distribution

degenerate at s achieves equality.

Proof. If C(t) < v, then #-l(v) exists. Since * is continuous

at v,

v = (*-Cv)) = sup I C(x)dG -l (x) = JC(x)dG (x) =
Oz<t 0 z;i- (v) 0 z*;*• (v)

=*[l - G Z*;*l CV -)],

so that the hypotheses of Lemma 3.1 are satisfied when F = G z;-l~v

and equality is attained. Uniqueness follows from the fact that

equality must hold in (3.2) if it holds in (3.1).i1
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Lemma 3.2. If the conditions of Lemma 3.1 are satisfied and if, in
aD

addition, e is convex, then U(i - F(t -)) = f t(x)dG0 (X)
0

whenever 6(t) < N,.

aD CD
Proof. f (x)dG (X) - t W- z z xp( -7L)dx:

L r C(z(l - y) + ty)e YLdy sE c(z),
0

where L = log[1 - F(t-)]. Since C is convex, c is also convex,

and sup Pr(z) = m(O) or m(t). If C(t) < v, then
0<z<t

sup cp(z) = T(t) implies by (3.2) that 4(1 - F(t -)) = w(t) =

O<zet

= C(t) > v, a contradiction, so that 4(1 - F(t -)) = sup o(z) =

O<z<t

OD
•(0) = f• (x)dGo(x). If C(t) = v, the result follows by limiting

0

arguments. 11

From 13.2) and Lemma 3.2, it follows that if C is strictly

increasing and convex on O,ap), and if 4(t) < v, then

aD aD

v °J 4(x)dF(x) < f r(x)we-xdx
0o

where 0 = -t log(l - F(t -)). This inequality is to be compared with

the inequality

SCD 1 -x/AL.
f C(x)dF(x) < J ((x).- 1e dx (3.3)
0 0 i

OD

where = , xdF(x) and C need only be convex. Inequality (3.3)

follows from an integration by parts and the fact (Karlin, Proschan and

Barlow,1961) that 1 - F(x) crosses e exactly once, the

crossing being from above. Inequality (3.3) is due to Karlin and

Novikoff (1962).
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Lemma 3.3. Let F be IHR, F(O) = O. Let ý be a function

strictly decreasing on [O,av) such that S C(x)dF(x) = v exists
(0 0

finitely. Then v > inf f C(x)dG (x)
O<z<t 0 Z

*(w) = inf f C(x)dG z;wX)
O<z<t 0

is strictly decreasing, and

* -i(0), C(t) > v
1 - F(t -)>

0 C(t) < v (3.4)

where *-l(v) = inf (w:*(w) < vi.

The proof of Lemma 3.3 is essentially the same as the proof of

Lemma 3.1, and will be omitted. The obvious analogs of Lemma 3.1' and

Lemma 3.2 (with concavity replacing convexity) are also omitted.

Let 1 - Hae 
x<t

0, x> t.

Lemma 3.4. Let F be IHR, F(O) = 0, and let C be a function

strictly increasing on E0,aD ) such that S C(x)dF(x) = v exists
0

finitely. Then

v= ( •(x)dH a(x)

0

has a solution a0  if and only if v < C(t) ; in this case, a0

is unique, and

1V > ,(t)
1 - F(t) <

• v < rt).(3.5)
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Proof. There is at most one crossing of 1 - Ha(X) by 1 - F(x) in (0,t),and

if such a crossing exists, it is from above (Karlin, Proschan, Barlow,

1961). If a 0 exists, v = J 4(x)dF(x) = r 4(x)dHa (x) and C
0 0 0

strictly increasing implies F and H are not stochastically ordered.
-aot a0

Thus 1 - F(t) < e

if a0  exists, then v = • 4Cx)dH a(x) < 0 C(x)dH0(x) = C(t); if
a 0 0 a

C(t) > v, then C(t) = C4(x)dH 0  (x0)>v 4(0)0= lim f (x)dHa(x)
O a-bw 0

together with continuity of f C(x)dH a(x) implies a 0  exists. Uniqueness
0

of a.0 follow.s from the stochastic ordering of the Ha and monotonicity

of C.11

Remark. Examination of the above proof shows that (3.5) still holds if

the hypothesis that F is IHR is replaced by the weaker condition that

x-log[l - F(x)] is decreasing in x < t.

Lemma 3,4'. If a0 exists, then equality in (3.5) is uniquely attained

by H If a0 does not exist and C is continuous, then C(s) = v

has a solution s 0 > t and the distribution degenerate at s0 attains

equality.

Proof. We need only prove uniqueness when a0 exists. Since

a0
log[l - F(x)] is concave, 1 - F(t) = 1 - HaoMt implies•

1 - F(x) > 1 - H a(x) for all x in [O,t], and hence for all x. This
0 a0  O

together with v I J(x)dH a(X) =.f C(x)dF(x) implies 1 - F(x)
0 0 0

=1 - H (x) for all x. II
a 0

SIn case v< 4 (t), the distribution Ha attaining equality
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is not right continuous. If right continuity is demanded, equality

cannot be attained in (3.5), but the bound can be approximated by a

distribution of the form

1 - H(x) =

0 x x>t +• C

aD

where a is determined by f. (x)dH(x) = v.0

Right continuity of F was not used in the proof of (3.5), and

hence F(t) can be replaced by F(t -) in (3.5). Of course, the

right continuous version of H attains equality in (3.5) so modified.
aO

The analog of Lemma 3.4 for decreasing C is straightforward,

and is omitted.

Let t > 0 ,

;w() =IIa(w/Z)x/ 0 < w < a < i, x >_ 0,

a;w W/ 1- - < 01 -K ix<O

and let

1 -K(x) = K (x).
ot a , I-F(t)

Lemma 3.5. Let F be DHR, F(O-) = 0. Let C be a function
aD

strictly increasing on [0,M) such that J C(x)dF(x) = v exists
0-

finitely. Then

*(w) = inf C (x)dK (x)
l>t>w 0- (;w
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is strictly increasing, and

1 - F(t):5 *-l(0), (3.6)

where -l (v) = inf Cw:*(w) > v) < 1.

Proof. Since log[l - F(x)] is convex and t > 0, there exists

a < 1 such that 1 - K (x) < 1 - F(x) for all x. Since • is

increasing,

aD MD aD

V = f C(x)dF~x) > f' ý dK aC(x) > inf C(x)dK (x) = *(l - F(t)).
0- 0- 0 >>a>l-F(t) J- d

As in the proof of Lemma 3.1, *(w) is strictly increasing in w , so that

(3.6) follows if -l(v) is defined. But (w:*(w) > v) is not empty, since

CD aD
lim 4(w) = lim .' ((x)ae-adx = lim lim I C(x)ae-axdx > lim C(M) > v
wTl a$O 0 M-.cD a+O M M-C

Since lim *(w) > v, there exists w < 1 satisfying *(w) > v . This
w-l

W-1
implies 41-l v) < 1. I

Lemma 3.5'. Equality is attained in (3.6) uniquely by the distribution
aD

K -1 (x), where a* is defined by f ((x)dK -1 (x) =a*, C-lv) 0 *,',- Cv)

(D
= inf J'C(x)dK - (x).

c>_,-l (V) 0 a, (v)

The proof of this is similar to the proof of Lemma 3.1'. We omit

the analog of Lemma 3.5 for decreasing C its statement is obtained by

substituting the words "decreasing" for "increasing" and "supremum" for



16

"infimum" in the statement of Lemma 3.5. The direction of inequality

(3.6) is then unchanged.

Lemma 3.6. Let F be DHR, F(O-) = 0, and let C be a strictly
CD

decreasing positive function on [O,c ) such that I.C(x)dF(x) = v

exists finitely. Then

t x

t

0

is continuous and strictly increasing in we[O,1], and

1 - F(t) > (v) > 0. (3.7)

Proof. Since C is positive and logEl - F(x)] is convex,

OD t t X

v = J'0(x)dF(x) > ý C(x)dF(x) > I C(x)d(L - [1 - F(t)J )= #(l - F(t)).
0 0 0

One concludes that * is continuous and strictly decreasing, that

lim *(w) = C(0) > v and that lira (w) = 0 by considering the integrand
w-0 w--

in the definition of 4 .* Thus * (v) exists. Since v > 0, it

follows that -l (v) > 0. II

Lemma 3.6'. Equality is attained in (3.7) uniquely by the (improper)

distribution

x
[#-i(v)]•" 0 < x < t

1 - G(x) = *-lv M x_> t.
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If 1ir ft(x)ae'axdx = 0 uniformly in a, 0 < a < b for some
m-I m

6 > 0, then for sufficiently small c > 0, there exists a proper

distribution satisfying the conditions of Lemma 3.6 with the value

1 - M - e at t, so that no sharpening of (3.7) is possible.

Before proving this result, we note that lim C(x) = 0 implies
O x-#CV

limra f(x)ae-axdx < lira (m) = 0, so that the limit is uniform in a.
m-*m m m-,

Proof. Choose e so small that f ý(x)d(l - [•-(v) + I X/t3 > V,
pit 0- t 1 '/t
possible since lim .' C(x)dfl - [#-(v) + e]/t]= L: (x)dfl - [,-l(v)i V,

e-O 6- a-
and since V(x) > 0 for all x. Choose a0 to satisfy I C(x)dGa(x) v,

where

*-(V + elX/t, _0< X_< t9

1 - G a(x) =
a { MEv) + eea(x-t), x > t.

In order to show that aO exists, note first that by choice of e,fO_(x)dGa(X) > v when a = - t-l log[-l (v) + e]. Then since C(x)
0- a
is uniformly integrable with respect to G , a < 6, lim T 4(x)dGa(x)a a-00®D a•O 0-
= • t(x)dGo(x) < v [Lo~ve, P.183,(1960)). By continuity of
0-

J"a%(x)dGa(x), a0  exists. Since a0 < - t- logc* ',l) + 6], Ga0  is DHR.11
0-

We do not give an analog to Lemma 3.6 for C(t) increasing;

instead we prove
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Lemma 3.7. Let F be DHR, F(O-) = 0. If C(x) is an increasing

function on [Oc ) such that lim C(x) = ® and such that

ODx-

J'(x)dF(x) = v < m, then the inequality 1 - F(t) > 0 is sharp
O-

for all t > 0. That is,no non-trivial lower bound can be given.
S

OD -bx
Proof. Since v < ,J" (x)be dx<cD for all b>b 0

0

- lim F'(x)/El - F(x)], where F'(x) = dF(x)/dx. Let
X-MD

-OD bxa = Ev - C(0)]/Ej '-(x)be- dx - C(o)]. Then lima =
0 b~b0

= Ev - C(0))/[lim C(x) - C(0)] O,so that for b - b0  sufficiently

small,

1, x < 0,

1 - G (x) -b -bx
ae , ->

is a distribution function satisfying the conditions of the lemma. But

lim 1 - Gb(t) = 0.
b--bb

Lemma 3.7 is still true even when a density is required to exist,

as can be seen by considering distributions of the form

e-x O<x<t

1 - G(x) =
-x--) x > t

aD CD

where J ((x)e'mXdx < v and p is determined by f C(x.)dG(x) = v.
0 0
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3.1 BOUNDS FOR 1 - F, th MOMENT GIVEN.
Qr

Theorem 3.8* If F is IHR, F(O) = 0, r> 1 and j x dF(x)
0

then

1 - F(t -) > / /r (3.8)
0, t > 11r /

where Xr = Ir/r(r + 1). This inequality is sharp.

Proof. This theorem is an immediate application of Lemmas 3.1, 3.1' and

3.2, where C(x) = xr. 11

In case r = 1 and F is continuous, (3.8) has an elegant

direct proof. Since log[l - F(x)] is concave, it follows from Jensen's

inequality that
a)

log[l - F(Xl) >_ log[l - F(x)]dF(x) - fllog(l - u)du = - 1,
o 0 >/Xl

hence 1 - F(XI) > e"I Since E1 - F(t/t _> El - F(XI) 1 for

t < X (See Barlow, Proschan and Marshall, 1963), we have

-t/X1
l-F(t)>e .1I

The above proof can be easily modified with limiting arguments to

include the case that F is not continuous. S.Karlin has pointed out

that this proof can also be generalized to include the oases r > 1

Theorem 3.9. Let F be IHR, F(O) = 0, r > 0, and fxrdF(x) =ir

Then

S= rt rx r-1wxdx (3.9)
•rJ
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has a solution w0 if and only if t > I/r In this case, WO

is unique, and

1/r

1 - F(t) < (3.10)

w0, t > "rl/r

This inequality is sharp.

Proof. This theorem is a special case of Lemmas 3.4 and 3.4'. II

Again we give a simple, direct proof different from that given for

Lemma 3.4. Since F is IHR, El - F(x)]1/x is decreasing, and

1ir = - rxr El - F(x)Jdx > f rx El - F(t)]X/tdx =
0 0

rtr- y -Y 1 El -F(t)]Ydy a cp (1- F(t)). (3.11)

0

Differentiation easily yields the result that cp(w) is strictly

increasing in [0,1]; furthermore, *(0) = 0, Cp(l) = tr. Since

tr > 1±r , there exists a unique w0 such that cP(wo) = •r" Mono-

tonicityof cp together with cC(l - F(t)) < ir implies that

w0 > 1 - F(t). II

Of course, bounds for distribution functions also yield bounds for

percentiles. Specifically, for 0 < p < 1, let p be a solution of

p
F(Zp -_< p <_F(Cp

p - - p

(de assume F is right continuous). If L(t) < F(t) <U(t), these
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inequalities together imply L(p -) < p < U(Cp), and if we define

L-1 (x) = sup ty:L(y) < x), U-1 (x) inf (y:U(y) Z x], then

u-(p) < • < L-p). Bounds for 4p obtainable in this way from
pp4

(3.8) and (3.9) are given in

Corollary 3.10. If F is IHR, F(O) 0 and 0 xrdF(x) = r , then
0r

-r 1/rlog(l - p),p < 1 - expcr(r + 1)]1/r

trl/r o iryr-l(1 - p)Ydy]-1/r > Cp > (3.12)

ir1/r p > 1 expEr(r + 1)]I/r

where Xr = iy/r(r + 1).

Proof. The lower bound for p follows directly from (3.8) and the
p

definition of U- The upper bound follows from (3.11) with t =p

1 - F(t) = p. II

Note that distributions which attain equality in (3.8) and (3.10)

also attain equality in Corollary 3.10.

The case p = 1/2, r 1 is of special interest, and yields

il log 2 < M < 21L log 2

where M is the median.
OD

Theorem 3.11. If F is DHR, F(O -)=, r > 0 and xrdF(x) = r < C'

then _t/xrl/r

t < rxe ' - r

1 - F(t) < (3.13)

r rer Tir r-r-r 1/r
r • - = rrt e-r t > rX

r(r +) tr r' - r
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This inequality is sharp.

Proof. We obtain the bound from Lemma 3.5, with 4(x) = xr, and

-k (x)dK w(x) = at rr(r + 1)(log ,/w)-r,

so that
wertrrrf(r + 1), w < er

*(w) =

trr(r + 1)(_ log w)-r, w > e-r.

Computing - 4Lr ), we obtain (3.13) from (3.6). Sharpness follows

from Lemma 3.5' .11

Theorem 3.12. Under the hypotheses of Theorem 3.11, no non-trivial

lower bound for 1 - F(t) can be given.

Proof, This follows immediately from Lemma 3.7.11

3.2 BOUNDS FOR 1 - F. LAKACE TRANSFORM GIVEN AT A POINT.

Bounds for 1 - F(t) under the assumption that

Se-SXdF(x) = f*(s) can be obtained even when the moments of F are

not finite. Bounds of this kind do not seem to be generally known,

although they are easily obtainable using standard methods.

We remark that inequalities given the first moment are

obtained from those given f*(s) by letting s -# 0, F(O- ) = O.

Before giving the improved bounds for distributions with

monotone hazard rate, we prove the following
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Theorem 3.13. If S > 0, r e-SXdF(x) = f*(s) and O= - a log f*(G),
0-

then

[- f*(s)]/[l e'st, t _> s0
1 - F(t - _<. (3.14)

1 t t< so

1 - Ef*(s)/e-St], t < sO

1 - F(t) > (3.15)

0 t > so.

Proof. 1 - f*(s) J(I - e-SX)dF(x) > - e-SX)dF(x) > (1 - e-t)dF(x)
0- t-

= (1 e-St )[1 - F(t-)

which gives (3.14).
f*8 )s t+ sx > t+ s

T= e-XdF(x)> e-dF(x)> e-St I dFx)= e-tF(t)

e 0

which gives (3.15). II

Theorem 3.13' . Inequalities (3.14) and (3.15) are sharp.

Proof. For fixed s and t, we consider the following examples;

for (3.14), t > so, place probability p at t, 1 - p at 0 where

p = El - f*(s)]/[l - e-st];

for (3.14), t < so, place probability 1 at so ;

for (3.15), t >_ sO, place probability 1 at so ;

for (3.15), t < Log place probability Pm at t, 1 p m at m where

f*(s) - -sn (s)/-t.m -.At -am " Then lim pm = cp(s)/et

0 -e
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In each case the distributions satisfy the hypothesis of Theorem 3.13.

Equality is attained except in the last case, where the bound is

approached asymptotically.

If F is IHR, it follows from (3.3) that

f*(s) e• e'SdF(x) < (1 + i ls)I so that f*(s) < a for all
0
-1

s -> Thus the following theorem has meaning for at least some

values of s < 0.

Theorem 3.14., Let F be IHR, F(O) = 0, let s 4 0, and let

f*(s) r= e-SX dF(x) < (E6

0
Then

st f*(s) 0 1- f*(s)exp[.- J 's• 0 -_
1 - f 7 - 8)

1 - F(t -) > exp(Lo0 ), s-ll - f*(s)] < t <[- s- log f*(s)

and s > 0 (3.16)

0, t > - s- 1 log f*(s) and s > O; or

t > s-1l[ - f*(s)] and s < 0,

where L0  is the unique solution satisfying - 1 < L < 0 of

f*(s) = - L exp(- st + 1 + L)

The inequality is sharp.

Proof. Suppose first that s > 0. We note for later reference that

-IEl - f*(s)] < - s-log f*(s) < )y

the first inequality is the well-known inequality log x < x - i.

I
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The second inequality follows from the fact that f*(r + s) is totally

positive of order 2 in r and s (see Schoenberg (1951) for

definition) so that - s -log f*(s) is decreasing in s, and

therefore - s -log f*(s) < lim - s' 1 log f*(s) = 1iL
s--O+

-sxNow let C) = e so that the conditions of Lemma 3.3 are

satisfied, and

f*(s) > inf e SXdG (X) = inf cp(z)

O<z<t 0 O<z<t

where e(z)=-Le-8 z/[s(t - z) - L] and L = log[l - F(t -)M.

Since e-sx is convex, c is also convex (See proof of Lemma 3.2).

dS = = 0, we see that

S= t - (1 + L)/s.

-1-Note that 2 < t whenever t < - s-log f*(s), since in this case

t < - s'llog f*(s) 5-1 implies 1 + L > 0 by (3.8) with r =1.

In case s- El - f*(s)] > t, we claim E < 0. Suppose the

contrary, 0 < i < t. Then

f*(s) > inf cp(z) = c(z) =-L exp(- st + 1 + L), (3.17)
0~z~0O<z<t

or

f*(s)estl > L eL

and since z0 > 0, - L > 1 - st. But 1 + L > 0 so that

1 - st < - L <l. Hence f*(s)e st-1 > L eL> (1 st)est-l,
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or f*(s) > 1 - st, contradicting t < s El - f*(s)]. Thus I < 0

and we conclude inf r(z) = cp(O). But f*(s) > cp(O) yields (3.16)
O<z<t

for t < s-l - f*(s)] and s > 0.
Next, suppose that a'll - f*(s)] < t < - -l log f*(s). The

function xe-x+st-1 is monotone increasing (decreasing) in

xCEO,1](in Cl,® )), and attains the maximum est-1 at x = 1. Since

t _< - slog f*(s), there exist solutions 0 < c < 11 c > 1 of

f.(s) = xe-x+ and setting c = -L we obtain from

f*(s) > ce-c+last (i.e.,(3.17)) that c < cO or c > cl. But

1 + L > 0 implies c < 1, so that c < co. This yields (3.16) in case

-f*(s) < t < - s-log f*(s) and s > 0.

If s < 0, then let V(x) = e-sx - 1, and the inequality follows

from Lemmas 3.1 and 3.2.

Sharpness of (3.16) follows from Lemma 3.1', and its analog giving

sharpness of Lemma 3.3.11

Theorem 3,15. If F is IHR, F(O) = 0, s X 0 and J e-SXdF(x) - f*(s) < m,
0

then

i t < - s-llog f*(s)

1 - F(t) < (3.18)

|-aot

-e t > - s-log f*(s)

where aO is the unique solution of

f*(s) = s e-(s+a)t +a
s+a s+a

The inequality is sharp.
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Proof. In case 8 < 0, the inequality follows from Lemma 3.4, and

for a > 0 it follows from the analog of Lemma 3.4 for decreasing

t•. Sharpness follows from Lemma 3.41.11

Theorem 3,16, If F is DHR, F(O-) = 0, s • 0 and

O e-SXdF(x) = f*(s) < aD then
0

exp{- st f*(s)/[l - f*(s)]J, t < El - f*(s)]/s

1 - F(t) < e Et-l[1 - f*(s)]/st, El - f*(s)]/s < t and st < 1 (3.19)

1 - f*(s), st > 1

The inequality is sharp.

CD

Proof. We compute I e-sXdK (x) = a/(st + n) + 1 - a where
0-

S= log a - log[l - F(t)]. The inequality then follows from Lemma 3.5

and its analog for decreasing C. Sharpness follows from Lemma 3.5'.

In case t < El - f*(s)]/s, the inequality is more easily obtained as

follows. From the proof of Lemma 3.5 and its analog,
aD

sf*(s) < s T e-sxdK (x) for some a, 1 - F(t) < a < 1 solving this
0 a

for 1 - F(t) yields 1 - F(t) < sup a exp(Est(f -1) + a st]/[f* - 1]3.
1-F(t)<a<_

From this one easily obtains (3.19) for st < 1. I

If st > 1, the distribution achieving equality in (3.19) is improper,

but can be approximated by proper distribution functions.

Theorem 3.17. If F is DHR, F(O- ) = 0, a > 0 and .e'SdF(x) = f*(s) < ®

then

1 - F(t) > e (3.20)
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where L0 is the unique solution of

fe(s) = L(l - eL-st)/(L - st).

The inequality is sharp.

Proof. This is a direct consequence of Lemmas 3.6 and 3.6'.11

Note that by Lemma 3.7, a non-trivial lower bound cannot be given

under the conditions of Theorem 3.17 if a < O.

3.3 BOUNDS FOR 1 - F UTILIZING BOUNDS ON THE HAZARD RATE,

In this section we indicate, without any attempt at generality,

how bounds on the hazard rate can be used to yield bounds for the

distribution function. Theorems 3.19 and 3.21 which assume an

increasing hazard rate have unstated DHR analogs. We assume that F

has a density f , so that the hazard rate q(x) = f(x)/El - F(x)]

is defined.

Theorem 3,18. If F(O-) =O, q(x) > t for all x > 0, and

Sxf(x)dx = 9, then
x

-at t < 1log( all) te , -<- -lol
0

1 -F(t) < (3.21)

-ata-?e -a't t >-to;

1 -e

--at
-1 + e-, t to

1 - F(t) > (3.22)
0, t > to•

I0
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We remark that q(x) > a implies a* < 1 so that t

is defined. More generally, by integrating both sides of

xrf(x) > xr[l - F(x)] it follows that

$r > rP/(r + 1), r > - 1 . (3.23)

It will be seen from the proof that the bound 1 - F(t) < a-

is valid for all t; this is a sharp bound for all t in case sL

is unknown.
t

Proof of (3,21). q(x) > a implies .q(x)dx > at impliest0
-.at

1 - F(t) . exp(- q(x)dx) < e't which is the upper bound for t < to.

To obtain the upper bound for t > to, note first that q(w) > a, implies

for t > x,

t -_a(t-x)
[l - F(t)J/[1 - F(x)] = exp(- S q(w)dw) <

x
Thus

IS t OD t
S= kf(x)dx = kxf(x)dx + f(x)dx > 1x6[1 - F(x)ldx + t[l - r(t)] >

t ]e(tX)dx

> •[ - 7(t)at dx + t[1 - F(t)] -

-al - F(t)]at[- tA-1 -at + a'2(1 -st)] + t[l -(t)]

=1-F(t)][1-e J-/ae ,

or

1- t< aLt/(l - e'at).
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Proof of (3.22).
O t OD

L = f o i- F(x)]dx = .E - F(x)]dx + [i - F(x)]dx

0 0

O fe(x)d 1-e t 1 - (t)e e d'cx + _-xe +
-t OL a

or
SIIt

1 - F~t) > am± - 1+ e-aii

Theorem 3.18'. Equality is attained in (3.21) uniquely by the

distribution

e-•x 0 < x<_ - t0

i- G(x) t < to ;
09 x> to ,

-axape x< t,
1 -e

1- G(x) t > to

0 x x>t

Equality is attained in (3.22), uniquely when t < to , by the

distribution

1 - G(x) = t _< to

L + pt)e .- (x-t) x > t

I- (x) = t> to-

0x> tto
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The remark following Lemma 3.4' is appropriate to the above left

continuous distributions. The above distributions do not have densities,

but can be approximated by distributions satisfying the hypotheses of

Theorem 3.18 and having densities. Inequalities (3.21) and (3.22) hold

when no density exists, providing lim CF(x + A) - F(x)]/A[l - F(x)] Z cc

Note that if t < to , under the hypotheses of Theorem 3.18,

f(t) > aDl - F(t)0 > a(a• - 1 + eC"t). (3.24)

Theorem 3,19 If F(O-) =O, q(x) > a, q(x) is increasing and
S xf(x)dx = ji, then

0

e -a t-< - mlog(1 all) =to

1 - FM) < (3.25)

-tyt
e-y t > to,

where y is determined by (1 - eYt)/y =t
e-tALI

1 - F(t) > 0 (az+l), • < t < to , (3.26)

0 , t,. j to ,

where z is determined by 1 - a = El - a(t - z)Oemz.

Proof of (3,25). For t < to , (3.25) follows from (3.21); for

t >to , (3.25) follows from (3.10) with r = 1. II
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Proof of (3,26) . For t < •I, (3.26) follows from (3.8) with r = 1.

To obtain the bound for ji < t < to, note first that q(x) > a

implies logE1 - F(x)] < - ax. Since log[l - F(x)] is concave,

there exists z, 0 < z < t, such that

-ax, 0< x < z

log[l - F(x)J <

az - (at + A)(xz)-z x>z
t-z z

where log[l - F(t)J = - (at + A).

,-ax

\\Aat .. . . . . ...
-a--------------------------- a

Figure 3.1

Thus for some z, 0< z <t,

a) z - (at . A) (x- z)- az]dx =

I = 1 - F(x)Jdx < exp(- ax)dx + exp[az t-z
z

= e t - z -z
a az (at+ A).e ,
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or

S- a -(l - e az) 1
(t - z)eaz - A + a(t - z)

-1 -azSince z < t < t, (l- e > 0 and

A < (t z)e-az - a(t - z) u (z)

- l(l e-az)

= a - - a-( - e-aZ)]Ea(t - z)e-az + e"J-Z (t - z)e-

cp1( (z) aJ
[• -a-l l _ e-*aZ)] 2

and cD'(z) = 0 if and only if 1 - a± = El - a(t - z)]e-az -(z).

*(z) is increasing in z ; *(0) = 1 - at < 1 - aL since t > I;

*(t) = e-at > 1 - all since t < to . Thus for some z0

0 < z0 _< t, cI(zO) = 0. Since pCPzO) > Co(z), 0 < z < t,

A < c(Zo0), or

(t -zO)e 0zO
A + at < az0 + - 1 =aZo+li II

I - a (1 - e-'Zo)

Theorem 3,19'. Equality is attained in (3.25) uniquely by the

distribution

-axe 0 < x <_to

1- G(x) t < tO

0, x > to
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e-xy x e t

1 - G(x)= t > to

O0 x>t ,

Equality is attained in (3.26), uniquely when t < to , by the

distribution

1 - G(x) =e"•,I x >_ 0 , t <_

e O<x< Zo,

1 - G(x) I= < t < to

tx o t

Sex 0 < x < to

1 - G(x) =t > to
0, x>x>to

Proof. For equality in (3.25) and t > to, G has hazard rate

Sy, x _< t
qG(x) =

D x>t .

To see that y > ý , let 9(y,t) = (1 - e'Yt)/y. Then

@/ýy< 0 , ag/at > 0, and t = to implies y = a. Therefore

if @(y,t) =ji and t > to , y >
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For equality in (3.26) and ji < t < to , G has hazard rate

a, X < z

(t k z)-, x > z

Since al < 1, (1 - al)eaz =1 - a(t - z) > 0, or (t - z)- > a .

Theorem 3.20. If F(O-) = 0, q(x) < p < ® for all x > 0, and

f xf(x)dx = i, then
0

e-o 0 t >,p- -

1 F(t) < (3.27)

1, t < ]I P -1,

where z 0  is the unique solution of (t - z)e"Pz =p - - satisfying

O<zo <t ;

1 - F(t) > et (3.28)

t
Proof of (3,28). q(x) < p implies I q(x)dx < Ot implies

t 0

F(t) - exp(- ýq(x)dx) > e-Pt. 11

Proof of (3,27). From (3.28), it follows that if z > 0

z zO

[l - F(x,1ix > ,• e'•Xdx (1- e- )/

Since q(x) 1- F(x) > f(x), and 1El - F(x)]dx > 8-[1- F(t)].
t
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Thus for < z <t,

z t aD

Sf - F(x)]ix + YE1 - F(xdx + JE1 - F(x)dx>
0 z t

-l(l -e z) + (t - z)[l - F(t) + 0-lEl - F(t)], or

1 - F(t) < i - 1 + e-Z]/E0(t - z) + 1) m co(z). Setting cp'(z) 0 0

in order to minimize the bound, we obtain

L - -1 = (t - z)e-pz *(z).

From the facts that *(z) is decreasing in 0 < z < t, *(t) = 0,

*(0) = t, it follows that for t > ji - 0-1 the equation

*(z) = I - 0-1 has a unique solution z0  satisfying 0 < z0 t. To

complete the proof, note that since (t - ZO)e" zO = I - P-1,

qp(zo) = (IM-i + eO)/ [(P-1)ez°0 +1 = e z0. ii

Theorem 3,20'. Equality is attained in (3.27), uniquely when

t > IL- 1-, by the distribution

le-Px 0 < x < z0 ,

1 - G(x) :e"z -0 1-0<I t>1

-P(x-t+zO)
e , x> t,

(1 x< t

1 - G(x) :I ea xt)

e-a(xt), x > t
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Thus for 0 < z < t,

z t aD
ILJl- Fxl + -~ F(xJ~ix + j'El - F(x))dx >

0 z t

>-1(1 - z) + (t z)[l - F(t)] + 0"1[1 -F(t)], or

1 - F(t) < [0 - 1 + e-]/[P(t - z) + 1] -m c(z). Setting cp'(z) = 0

in order to minimize the bound, we obtain

I - -1=(t - z)e-Pz = *(Z).

FRom the facts that *(z) is decreasing in 0 < z < t, *(t) =O,

*(0) = t, it follows that for t > i - 0-1 the equation

*(z) = I - P-1  has a unique solution z 0 satisfying 0 < z 0 s t. To

complete the proof, note that since (t - zZ 0)e = I -l P

cpZO) = ( .Pl - 1 + e -OzO) / [(Pl - 1)e OzO + 11 = e-PzO0. 11

Theorem 3,20'. Equality is attained in (3.27), uniquely when

t > L- P -1, by the distribution

e-Ox, 0 <_ < zo,

e - G(x) e -OzO, z0 < x < t t >

-O(x-t+z 0 )
e , x>t,

1 Gx)=I1 ,x < t

1 (x
e-a(x-t) x > t

I
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where a = - t > - Equality is attained in (3.28) by the

distribution

e- 0 < X < t

1. G(x)=

e-t(p-a)-ax >t

where a = e/[i - P-(i- e

We omit a proof of this theorem.

If t > 0 - p-, then (3.23) yields

-Pz0
f(t) < P[l - F(t)] < Pe (3.29)

In place of (3.27), it is possible to give an explicit upper bound for

1 - F(t) ;

1 - F(t) < I/(t + ). (3.30)

To obtain (3.30), note that

t aDO
El - F(x)Jdx + f El - F(x)Jdx > tEl - F(t)] + f If( x )dx =

0 t

(t + P-1 )cl - VOt)].

This improvement of Markov's inequality is of course not sharp.
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The hypotheses of Theorem 3.20 yields the moment inequality.

l'r<-S r+l /(r + 1), r >-1 (3.31)

which is to be compared with (3.23).

Theorem 3.21. If F(O-)= 0 , q(x) < 0, q is increasing and

. xf(x)dx = ji, then

I , t< -4 -

1 - F(t) s (3.32)

where w0 is the unique solution of 9 = -[t(l - w)/log w] + w/p

e-t/4 <

e t

1 - F(t) > (3.33)

e"•(t-")-l, t > .

Proof of (3.32). If L = logEl - F(t)] then since logEl - F(x)]

is concave, 1 - F(x) > eLX/t, x < t. Since q(x) ,

I - F(x) > f(x)/l, so that

®t • Ij L-

[ [1 - F(x))dx > exp(Lx/t)dx + -1 (x)dx= L- t(e -l)+ •1-i[1 F(t)]

tF(t) I - F(t) a CPU - F(t))" log[l - F(t)t +



39

Since lira t(w) = 0, lira t(w) = + t and p(w) is increasing
w-0 w-0l

in w, there exists a unique w0 satisfying ep(wO) = - whenever

t > p - 0-1 . Furthermore, 1 - F(t)<w0 . II

Proof of (333). Again let

L = logEl - F(t)]. Since q(x)

is increasing, there exists z z t+L,8-! t
X -Z

such that log[l - F(x)J < L X - Z xx_+L

x>z. Since q(x) < P, and 69[1-F(x)] I

F(O -) = 0, it follows that

0<z<t + Thus for _LL_
some z, 0 < z < t + L-, t-z

i , x<z

1 - F(x) <

exp(L X ), x > z,
t z

Figure 3.2
and

oD OD
[1 F(x)]dx < z + .f exp(L x-- -)dz =z -(t -z)L".

z t z

Since t > z , *(z) = - z)/(t - z) < - L-1 *'(z) (1- t)/(t -z)2

so that if t > ji *(z) is decreasing and mrin (z)
0ý<z:t+Lp 1  jrz-l -

= *(t + L-1) < - LC, or L > P(V - t) - l* In case t < 'p the

bound follows from (3.8) with r = 1.11
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Theorem 3.21'. Equality is attained in (3.32), uniquely for

t > - - by the distribution

S1 9 O<x_<t

1 - G(x) = t < 1I -

exp(- x t t), x > t

1-t 1

WOXt, 0 < x < t

1 - G(x) = t t It

IW e- P(x-t) x > t,

Equality is attained in (3.33) uniquely by the distribution

1 - G(x) = e-x/1A, t <,1

1, x _ - -I

1 - G(x) = t > J.
exp[- P(x - )-i, x >• IL -1

In the case of (3.32), t - G has hazard rate

- t-l log W0 , 0 < x < t

q0 (x) =
B, x>t ,

and we note that -t" log w0 = (l- Wo)(I- w0 / p) <

since P$L>l>w0 .
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3.4 BOUNDS IN TERMS OF PERCENTILES.

From the general results of Section 3, bounds for expectations of

monotone functions can be obtained in terms of percentiles. In particular,

it follows from (3.2) that if F is IHR with F(O) .0 and if • is a

function increasing on [0,c), then

S C(x)dF(x) < sup S C(x)dG(X) (3.34)
0 O<z<t 0

where

G Z(x)
[i - F(t-)](x-z)/(t-zj' , x > z

Since G has a density that is a P61ya frequency function of order

2 (PF 2) (see Section 5 for a definition), (3.34) is also sharp with

this strengthened hypothesis.

With C(x) = X[s,o)(x), the characteristic function of [s,-),

it follows from (3.34) that

[1 - F(t)]s/t > t

1 - F(s) < (3.35)
1, s< t;

this bound is also given by Barlow Marshall and Prosehan (1963). Here

the exponential and degenerate distributions achieve equality.

By interchanging s and t in (3.35) it follows that

[1 - F~t)]s/t, s <_ t

1 - F(s) ý (3.36)

0, s >t
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More generally, let
[1 - F(t)]x/t, x < t

1 - H(x)

0, x>t.

Then by (3.35), 1 - H(x) •1 - F(x), x < t, so that if • is

increasing,
St+ t+ 0

S ý(x)dF(x) _ S ?(x)dF(x) _ S C(x)dH(x) = S ý(x)dH(x). (3.37)
0 0 0 0

"With '(x) = X[s,cO), (3.37) reduces to (3.36).

Note that equality in (3.37) is attained by the distribution function

H which does not have a PF 2 density, so that (3.37) can be improved

in case F has a PF2 density. Such an improvement is given by (5.5).

*1
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4. AOUNS FOR -..-- F GIVEN TWO MOMENTS,

In this section we confine our attention to "power moments",

although the methods used are more generally applicable.

In order to illustrate these methods, we give a heuristic

discussion of the following problem: obtain sharp upper and lower

bounds for 1 - F(t) when Fe¢, the class of IHR distributions
m

satisfying F() = 0, F(m) 1 and r xdF(x) = 1 = 1 for
0

convenience). Let f= 0 < w < 1), where
w

x < whr

1, x~w

1 -Gw(X) = -a(x-w)1 e axw, w_< x < m (4.1)

0 , x>m

and a is determined by

a-l(l - e-a(m-w)) =1-w.

Let •2 =[w: 1 < w < ml, where

-bx b-i
e , 0 < x < -b log(l -b)= w

1- G wX) = (4.2)

0, x > w,

Note that sbi C 5. If we show that

[(x, 1 - G(x)): Ge/1 U 6 2 ((x, U1- F(x)): AT),
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then for Fe¢ and fixed te[O,m],

inf 1 - G(t) < 1 - F(t) < sup 1 - G(t), (4.3)

where the extremums are taken over i

Let the Fegr- (•IU• 2). Since F and Gw have the same mean,

they cross at least once; since F is IHR, they cross at most twice

in (O,m). If there are two such crossings, say at u and v > u,

then 1 - F(x) > 1 - Gw(x) for u < x < v. If w > 1, there is exactly

one crossing for x < w, say at v, and 1 - F(x) > 1 - Gw(X),

0 < x < v. We remark that since F is IHR, it is continuous except

possibly for a jump at the right-hand endpoint of its support.

wu I

Figure 4.1

1-Gwlx)II"-1

0 v w m
Figure 4.2

Ir
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Let v be the crossing from above of 1 - G (x) by 1 - F(x)

if it exists; otherwise let vw = m Then v < m and

as w = - b- log(l - b) decreases from m to 1, b

decreases to 0, and heurstically, vm decreases to 0.

Again consider v = v (G = G ) and increase w from 0 to 1.
m 0 m 0

Then v increases to m as w increases to 1. This shows that

for fixed FeT , (x, 1 - F(x)) e [(x, 1 - Gw(x)),O < w < m)

for all x, 0 < x < m.

The bound G uP2 [1 - G(t)] is a special case of (3.9).

In case M = O , a = (1 - w) and if t < 1 inf [i - G(t)] =

Gekb U4Y2t w -t

min exp(- w_-) = et, which is (3.8) with r = 1.
O~w<l

Note that for Gw in 4 and m = CD,

aD 2
=2 1' x l1 - Gw (x)dx = 1 + (1 - w)

0

and as w ranges over [0,1], 12 ranges over [1,2]. But for any

iHR distribution, i12< i 2 - 212122 and since 1 - Gw(1) = e-1

for all w, we see that e- is a sharp lower bound for I - F(t1 -)

whenever F is IHR with mean tl= 1, regardless of the specified

value of 112
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4.1 BOUNaFOR I-F WHEN F IS TR

Retain the assumption that i= 1, fix IL and let

T0 = 1 - (I2 - 1)1/2 ' T1  a 0 1 log(- aO) where a0  in

[0,1] satisfies

2(a) i El - a log(l - aA= t2

Such a solution exists since rp(a) is continuous in a, lim ,(a) = 1,
a-O

and lirn r(a) = 2 (F IRR implies 1 < 12 < 2).
a-2

Let A =fGT: T > TI], where

1 - -1(x) e A < x < T T > T1 (4.4)

0, x> t

1= A + 1 El - e-a(t-A), (4.5)

and

2 a 2 aT + 1 -a(T-A) aA + 1 (4.6)
2 2 2 (4.6

a a

Let = (GT: To < T < T1 1 , where

e ,x<T

1 - ,(x) 9 T <T<T1 , (4.7)

e-aTa2(x-T) 
> T

I
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-a2T - -a1T
e (4.8)

and

2 2 -all 22(1 + a2T)e . (4.9)
= a2 (l + alT. e + a-

We defer the proof that solutions of (4.5),(4.6), and (4.8) exist

A principal result of this section is

Theorem 4,1. Let be the class of IHR distributions F such

that F(O) = 0, f xdF(x) 1 and f x dF(x) = v2" Then
0 0

f(x, 1 - F(x)):FF• I ((x,. - G(x)),G, A U •4b,

and hence

inf[l - G(t)J < 1 - F(t) < sup El - G(t)], (4.10)

where the extremums are taken over '&3 U 14 •

Equations (4.5),(4.6), and (4.7),(4.8) guarantee that GT has

mean l - 1, and second moment ±2 so that It Uh4 C2 2 4

Hence it is clear that (4.10) is sharp, although it is not clear that

equality is attainable.

We defer the proof of Theorem 4.1.

-b x
Remark. We use repeatedly the fact that the functions c e

-b 2 x
c2 e are identical or have at most a single crossing (simple inter-

section).
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Corollary 4.2 . Let F be IHR, F(O) = 0, and let F have

first and second moments p1 = 1, and 1i2 ý 1. Then

1 - F(t) > inf G(t) inf e-a(tA) t < 1 (4.Ii)

where a and A are determined by (4.5) and (4.6) as functions of

T;

1 - F(t) > e-1 t = 1

-aT-a2 ( t-T )

1 - F(t) > inf Cl - G(t)J = inf e 2 i < t < T, (4.12)

where a, and a2 are determined by (4.8) and (4.9) as functions of

T;

I - F(t) > Of t > T1.

The bounds are sharp.

The restriction I2 X 1 is required in order that 1 - F(t) > e-I

t = 1 ; otherwise, 1 - F(t) must be replaced by 1 - F(t -).

Proof. For To < T < T1 , and x < T, 1 - GT(x) > 1 -G (x),
1

since otherwise GT and Gl cannot cross twice. If T < 1,

then since 1 - G,(x) and 1 OT 0(x) must cross twice,

0 -1
1 - GT(T) > 1 - oT (T). This together with 1 - GT(l) > e- 1 - GT (1)

0 0
(Theorem 3.8) implies 1 - GT(x) > 1 - GT (x), T < x <1 . But

0
a and thus (4.11) follows from (4.10).

'T0 O
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If T 1 <T<D then GT and G =G can cross only onceI T1, < ,te n 0 OD

in (O,T). Since 1 -(1) = e 01

1 -l (To) < 1 - GT (TO)= i, this crossing must occur in (Tol].

Hence 1 - GT(x) > 1 - 0 (x) for 1 < x < t, and we conclude from

(4.10) that 1 - F(t) > inf El - G(t)0, T, > t > 1. The

remainder of (4.12) follows from the fact that for x < T < T1,

1 - GT(x) > 1 - GT (x) (otherwise GT and GT cannot cross twice)o.I

Theorem 4.3. Let F be IHR, F(O) = 0, and let F have first and second

moments I•l = 1 and l2" Then

i-F(t) i 0< t < TO =i(4.13)

i1- F(t) -a e , TO < t < Tat (4.14)

where a, is determined by (4.8) and (4.9) with T =t;

-a~t-A)
1 -F(t) < e , t > Tit (4.15)

where a and A are determined by (4.5) and (4.6) with T = t.

These bounds are sharp.

Proof. Let us first assume that (4.8), (4.9) and (4.5)(4.6) have the

required solutions. It is easily verfied from (4.5) and (4.6) that

"liM A = 1 - (1 2 -1Pat and sharpness of (4.13) follows. Let

T-O _alt >-a ax

T0 < t < T1 and suppose 1 - F(t)> then 1 - F(x)> , 0 <x < t.
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If T 1 < T < O, then Gr and OT C0 can crossonlyonce

in (0,T). Since 1 - N(l) > 1 - Go 0l) = e-1, and since

1 - GT(To) < 1 - GT (TO) = 1, this crossing must occur in (To,1].

Hence 1 - G.(x) > 1 - 0 (x) for 1 < x < t, and we conclude from

(4.10) that 1 - F(t) > inf [1 - G(t)], T1 > t > 1. The

remainder of (4.12) follows 4 from the fact that for x < T < T1,

1 - GT(x) > 1 - GT 1(x) (otherwise GT and GT cannot cross twice).II

Theorem 4.3. Let F be IHR, F(O) = 0, and let F have first and second

moments il = 1 and j12 " Then

1 -F(t) < 1 , 0 < t < To = 1 - ('p2 - 1)1/2; (4.13)

-ait1 F(t)_< e , To < t < T1 , (4.14)

where a1  is determined by (4.8) and (4.9) with T = t;

1 F~) < -a(t-A)
1 -F(t) < e , t > T1 , (4.15)

where a and A are determined by (4.5) and (4.6) with T = t.

These bounds are sharp.

Proof. Let us first assume that (4.8), (4.9) and (4.5)(4.6) have the

required solutions. It is easily verfied from (4.5) and (4.6) that

lir A = 1 - (112-17
2, and sharpness of(4.13) follows. Let

iW t T ans-alt 
-atx

T < t < T and suppose 1 -F(t) > ; then 1 -F(x) >-a x
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Since F and G cross at least twice, this would force 1 - F(t)t

and e to intersect three times which is impossible. If

t > T1, then 1 - F(t) > 1 - Gt(t) together with the fact that F

ttand (It cross at least twice would force F(x) and 0-.a(x-A) to

cross three times and again we obtain a contradiction.

Theorem 4.3 also follows as a corollary of Theorem 4.1, since from

Theorem 4.1, we need only show that 1 - Gt (t) > 1 - Gs(t) for all

s X t ; but this follows from the fact that Gt and G must cross

twice.

To complete the proof of Theorem 4.3, it is necessary to show that

(4.8), (4.9) and (4.5), (4.6) have the required solutions. This proof

is given in

Lemma 4,4, For every T, T > T1 , there is a unique solution of (4.5)

and (4.6). For every T, To < T < T, there is a unique solution of

(4.8), and (4.9). Furthermore, these solutions are continuous in T.

Proof. Consider first the case that T > T1 ; fix T > T1 , At [0,11,

and let

a(aTA) = a-l(1 - e-a(T-A)) + A

Then lim a(a,T,A) = A - 1, lim a(a,T,A) = T - 1 > C (T1 >l) and
a-a a-O

aqa.A < O for all a. Therefore c(aT,A) = 0, i.e. (4.5),has

a unique solution a(T.A) for each fixed A and T; furthermore

a(aTA)( <) 0 for a(>, a(T,A). Let 6 > 0. Then

o(a(T,A) - b,T,A) > 0, a(a(T,A) + 6,T,A) < 0. By continuity of a,

there exists el > O, 42 > 0 (possibly depending on a,6,T and A) I
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such that IT - Tj < elIA - A'I < I implies a(a(T,A) - 6,T',A') > 0,

a(a(T,A) + 6,T',AQ') < 0. Hence there exists a(T',A'),

a(T,&) - 6 < a(T',A') < a(T,A) + 6 , such that a(a(T',A'),T',A')= 0.

This proves that a(T,A) is continuous in T and A.

Let
K(4,T) = A2 - 2a-2(aT + 1)e-a(T-A) + 2a-2(aA + 1)

where a = a(T,A) is determined by (4.5). We want to show that

K(A,T) = t29 i.e. (4.6), has a unique solution A(T) continuous in T.

If A = 0, (4.5) implies e-aT= 1 - a, so that

K(,T) = 2a -(l- Te-aT ), and

aK(OT) / T = 2a-2 E(i - T)B9/3T - a(l - a)] > 0

-aT -aT -1 -aT -1where •as/T = ae- l - Te-a)- = a(l - a)(l - Te-) if

(1 - T)a(l - a)(l - Te-aT)-1 > a(l - a),

-aT
which is clear if 0 < a < 1. But this follows from e = 1 - a and

T > 1. Therefore T > T1 implies

K(OT) > K(O,T 1 ) = 12 > 1 = lim K(A,T).
A-I

This implies that K(A,T) = •2 has a solution A(T). Uniqueness of

ACT) follows from the fact that for given T, there is at most one

element of 4 ; two distributions in A' are identical, or cross
3 ;3

exactly twice, and the latter is impossible if they correspond to the

same T.

Continuity of A(T) follows in the same manner as continuity

of a( T,A). This completes the proof of Lemma 4.4 in case T > TIo

I
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Let To T < T, . Solving (4.8) for a2 as a function of

aI and T we obtain

-afT -afT -i
a 2 (al,T) a 1 e (a -+e )

and substitution in (4.9) yields

h(al,T) =e-a T[1 + (2 a T)(aI 1)] + (a 1)2 1/a 2  lT 12

It is easily verified that h(l,T) = 1 and lim h(al,T) = (1 + (1 - T)2 )/2.
1 -

Now T > TO = 1 - W2 - 1)1/2 implies (1 + (1 - T) 2)/2 < 1.

Since h is continuous, there exists al = a (T) satisfying

h(a, T) = ý/2. Furthermore, by arguments previously used it can be

shown that a1 (T) is unique and continuous. II

If F is IHR, there can be at most two crossings of 1 - F

and an exponential. Furthermore, the crossing points must be well defined,

since if 1 - F(x) and ce-bx coincide for all x in some internal,
-hx

then 1 - F(x) < ce for all x, and there can be no crossing. This

is a simple consequence of the log concavity of 1 - F.

Proof of Theorem 4,1. Let F :7 -( 153 U 4). For T > T1,

let r(T) be the point in (A,T) that 1 - F crosses 1 - T

from below if such a crossing exists ; otherwise, let r(T) = A.

Let s(T) be the crossing in (A,T) from above of 1 - GT by 1 - F

if such a crossing exists; otherwise, let s(T) = T. Note that

r(T) < s(T).

For To T < T, let u(T) be the crossing in (T,ce) from0- 1'
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below of 1 - GT by 1 - F; u(T) always exists. Let v(T)

be the crossing in (T,aD) from above of 1 - GT by 1 - F if

such a crossing exits; otherwise let v(T) be the right-hand endpoint

of the support of F.

In order to show that r,s,u, and v are continuous in the

interior of their range suppose that F and GT cross at x = xO

(in case T > T1 , let x0 ý T). Choose e > 0 sufficiently

small that EGT(xo - e) - F(xO - c)][G(xO + e) - F(xO + 0)J < 0

(and x0 + e < T when T > T). By Lemma 4.4, G T(X) is continuous

in T for all x (x < T in case T > T ) Hence there exists

6 > 0 such that IT' - TI < 6 implies

[G (x - e) - F(x 0 - e)EG (x + e) - F(x + e)] < 0. This means
T 0 0 T,0 C

that G and F cross in the internal (x0 - C, x 0 + C).

To show that for all x , T1 , there exists T such that F and

GT cross at x, it suffices to show that lim r(T) = 0,

lim r(T) = u(To), and lim u(T) = T The second two limits are
T-0m T--T1

clear frum the definitions. Proof that lim r(T) = 0 is similar to
TIT 1

the proof of continuity.

To show that for all x > T1 , there exists T such that F

and G cross at x, we note that s(T 1 ) < TI, lim s(T) = v(T 0

T-ihh
lim v(T) =right-hand endpoint of the support of F.11I
T-T1
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4.2. BOUNDS FOR 1 - F WHEN F IS DHR.

Let

ae O<x<T
1 (- 0 < T <_ T (4.16)

--a2 x+(a 2 -a )T

ae , x >T,

where

1 -alT -alT

-i - e 1,(e , (4.17)

-alT 1-aT

½ /2a = a 1-2l - (afT + l)e 1 + a 2(a2T + l)e (4.18)

Following the proof of Lemma 4.4, we conclude that for every T > 0

and every a, 212-1 < a < 1, there exists a, and a2 satisfying

(4.17) and (4.18). Note that

-l-2x/V.2
1 - G _l(x) = 22-Ie , x > O.

Equations(4.17) and (4.18) insure that GT a has the first moment

tl = 1 and second moment 112 " Furthermore, T.a is DHR if

½> 2

Theorem 4.5. If F is DHR, F(O-) =0 and if F has first and

second moments IL 1 and 2' then

202- , t 0

-F(t) > (4.19)



56

where aI is determined by (4.17) and (4.18) with a = 1 and

T = t. The bound is sharp.

Note that since F is DHR, 12 > 2.

Proof. Since F and G have the same first two moments,

® ;212

they cross at least twice. Since F is DHR there are exactly

two crossings, and the first crossing of 1 - G -1 by 1 - F

must be from above. Hence 1 - F(O) > 2 *2"1. Now let t > 0 and

suppose that 1 - F(t) < 1 - G t;l(t). Then since 1 - F(O) < 1 - Gt;l(O),

F and Gt;1 can cross at most once in [O,t], and it follows from

1 - F(t) < 1 - G t;l(t) that there are no crossings in [O,t]. Since

1 - F(t) < 1 - Gtil(t), there can be at most one crossing of F and

G t; in (tO ). Hence F and Gt;1 cross at most once in [0,®) ,

contradicting the assumption that they have the same first two moments. II

1 1
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Theorem 4.6. If F is DHR, F(O-) 0 and F has first and

second moments ji = 1 and j2 then

e-t0<t<1e ,t O<t<l

(te)- 1 , 1 < t < t2 12

1 - F(t) < -2 2/IL (4.20)

e 2
2 112 -e ' •2 12 < t < ji2

sup 1 - (t), t > 2
0(T<t

These bounds are sharp.

Proof. Recall from (3.13) that

I -te t t <_l

1 - F(t) <

(te)-I t > 1.

We wish to show these bounds are sharp for t < ji2 /2. Let a1 1a2

and a be determined by (4.17) and (4.18) , and assume that

IL2 > 2 (so that F is not exponential). Then since F is DHR,

a, > 1 > a 2 . Hence by (4.17), lim a =
T--ci

aT
lim al[(all' 1  - 1)e + i-1 = 0. By (4.18),
T-M

1 aT-1 -aT
lim a 2  e < 1 /2a < O, so that lie a = 0. Hence
T-fm T-(u

from (4.7) and a, > 1 we conclude lim a, = a. This means

T-,w
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that lim 1- C| (x)= ae-ex. Since lim 1 -GT (t) e-t
T--W T-w

(4.20) is sharp for t < 1. Since lir 1 - GT.;/t(t) = (te)-
T-w

(4.20) is sharp for 1 < t si 12 / Note that for t = 12,

equality is attained by the distribution 1 - G

Next, recall from (3.13) that

1- F(t) < 2e-2 It2 /t t > 21121

this proves (4.20) for t = I2" Equality is attained in (4.20) for

t = 12 again by the distribution 1 - G -1"

We have shown that 1 - F(t) < 1 -G 2 1 (t) for t =2 /2

and t = I2 " Since F is DHR, this implies 1 - F(t) < 1 - G _l(t)

for all t in [4 2 /211 2), so that (4.20) holds for

112 /2 < t < 2 "

Finally, we consider the case t > ½2 Since 1 - F(O) < 1 - GT;l(0),

there is at most one crossing of 1 - GT;1 by 1 - F in (0,T],

and hence there is a first crossing u(T) to the right of T. Since

1 - (T) < 1 - F(T) by (4.19), this crossing is from above. Since

u(T) > T, lim u(T) = w . Since lim 1 - GT;i (x) = 1 - G (x),
T--c T-0 D ; 2112j

lim 1 - G;i(I2 = 2 2-1e-2 > 1 - F(I 2 ), and hence lim u(T) < &2"
T2 T-.0

By arguments similar to those of section 4.1, it follows that u(T)

is continuous in T, so that for every t > 1±2f there exists T < t .I
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such that u(T) = t, that is, 1 - GT l(t) = 1 - F(t).II

We remark that the bounds of (4.20) are sharp with the additional

assumption that F(O) = 0. However, it may be that the bound can

only be approximated, and equality is unattainable.

Remarks on Generalizations. We conjecture that in case the first

n moments are given that the family of extremal distributions again

consists of piecewise exponentials with n pieces, and the

possibility of truncation on the right. Indeed, it is possible to

show that such distributions are extremal by arguments essentially the

same as used to prove Theorems 4.3 and 4.5. However, one requires a

generalization of Lemma 4.4 (or its DHR analog). Here, one would like

to know the solution to the moment problem for IHR (DHR) distributions.
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5. UPPER BOUNDS FOR 1 - F WHEN f IS PF 2 .

In this section, we obtain a sharp upper bound for 1 - F(t), given

a single expectation S ý(x)dF(x) = v (C monotone), when F(O) = 0
0

and F has a density f that is a P6 1ya frequency function of order 2

(PF2 ). Briefly, f is PF 2 if log f(x) is concave on the support of

F, an interval (see Schoenberg (1951) for a precise definition). The

condition that f is PF2 implies that F is IHR (Barlow, Marshall,

Proschan (1963)), so that the result here is a sharpening of inequality

(3.5).

Under the condition that f is PF2 , no sharpening of (3.1) is

possible, since the extremal distributions of (3.1) are exponential,

and therefore have PF2  (indeed, PFO) densities.

Let

(I - e-bX)/(l - e-bm), 0 < x < m

Gm(x;b) =
i, x> m,

for m > 0 and b 0 0; let Gm(X;O) lrm G (x;b). This distribution
b-O 0

has a density

-bX/(x bm)
be - e- 0, O<x<m

gm(x;b)

0, elsewhere,

which is obtained by truncating an exponential density. Hence g is

PF2.

Theorem 5.1. Let f be a PF2 density such that f(x) = 0 for x < 0.

Let C be a function continuous and strictly increasing on [0,00) such

that S C(x)dF(x) = v exists finitely. Then for each m > C- (v),
0
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there exists a unique b satisfying
o@n

S (x)dG(X;bm) = v. (5.1)

0

Furthermore, for all t > 0,

1, t < C-1 (V)

1 - F(t) < (5.2)

sup[l - Gm(t;bm)], t >
m>_t

In the case that C(x) = x, this bound has been computed numerically,

and is graphed in Figure 6.1.

Before proving Theorem 5.1, we prove some useful lemmas.

Lemma 5.2. S C(x)dGm (x;b) =- (b,m) is continuous in b for fixed m
0

and continuous in m for fixed b.

Proof. Since limGm (x;b) = Gm(x,b*) , and limG (x;b) = m,(x;b) for
mG b-b* m-* m(b

all m* > 0 and all b*, the theorem follows from the Helly-Bray lemma

(Lo~ve, 1960, p. 182). 11

Lemma 5.3. For all m > 0 and ve[C(O),C(m)] there exists a unique b

satisfying (5.1).

Proof. We first show that Gm(x;b) is strictly increasing in b for each

x < m. If b / 0, aGm(x;b)/ab > 0 if and only if q)(x) > p(m) where

q(z) = ze-bZ/(l - e-bz). But •'(z) = e-bz(l - bz - e-bZ)/(l - e-bz) 2 < 0

for all bz / 0. Hence for x < m and b / 0, q(x) > p(m). If b = 0,

then aGm(X;b)/8b x(m - x)/2m > 0 for x < m. Thus G0(x;b) is
mlb=O

4
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strictly increasing in b for each x < m, and hence O(b,m) H Sý(x)dGm(Xb)

is strictly decreasing in b (since C is increasing). Since O(b,m) is

continuous in b by Lemma 5.2, it remains only to show that lim SC(x)dGm(x;b)

= C(O) and lim. SC(x)dGm(x;b) = C(m). But this follows by the Helly-Bray

lemma, since
O, x < 0 0, x < m

limi Gm(x;b) and lim Gm(x;b)
b-40 1, x>o, 1, xm. >

For convenience, we introduce the notation

gin(x) gm (x;b M).

Lemma 5.4. gM(t) is continuous in m > t.

Proof. It is sufficient to show that b is continuous in m, where

b is determined by (5.1). Let e > 0 and fix m. Since ¢(b,m) is

decreasing in b (see the proof of Lemma 5.3), and since 0 is continuous

in b (Lemma 5.2), there exists q > 0 such that $(bm + eM) > v -

and $(b - 6,m) < v + n. Now since 0 is continuous in m, there exists

6 > 0 such that Im. - m'1 < 6 implies O(bm + E',m') > v - 2qO(bm - E,m')

< v + 21. Then by monotonicity and continuity of 0, b mI,(bm - £,bm + e).

That is,, ibm - bim I < s whenever Im - m'l < 6.11

Suppose that for all m, f I gm Then g crosses f exactly

once from below; since log f(x) is concave and log g (X) is linear

in xe[O,m), there is at most one such crossing (see Karlin, Proschan

and Barlow (1961)). By (5.1), F and G must cross at least once

(f and g must cross twice) so that there exists at least one such

crossing. Denote the unique such crossing point by x*(m).

IA
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Lemma 5.5. x*(m) is continuous in m.

Proof. Fix m and let x*(m) = x*. Since g crogses f from below

at x*, there exists e > 0 such that

> 0, x* - 2e < x < x*

f(x) gm(x)
< 0, x* < x < x* + 2e.

Let 21 = min[[f(x* - e) + gm(x* - ),Igm(x* + e) - f(x* + e)]]. Since

gm(x) is continuous in m > x for fixed x, there exists b > 0 such

that Im - m'l < b implies Igm(X) - gm,(x) l < I for x = x* + e. Then

If(x*+ e)- gm,(x*+ e)l Ž If(x*+ e)- gm(x*+ 0)1 - Igm(x*+ e)- gm,(x*+ 0) > q,

If(x*- 0)- gm,(x*- ) > If(x* e)- gm(x*- e)1 - Igm(x*- e)- gm,(x*- e) > I .

By continuity (in x) of f(x) and gm,(x), x*(m')¢(x*(m) - e, x*(m) + e);

i.e., Im - m1 1 < b implies Ix*(m) - x*(m')I < e..11

Proof of Theorem 5.1. We suppose without loss of generality that f / gm

for all m > 0 and consider the case that t > C-I(v). Since SC(x)dF(x) =v,

it follows that (0) <_ v, and for m ý t C-l(v), v < C(m). Thus bm

satisfying (5.1) exists uniquely by Lemma 5.3 for all m > t. Now assume

that t <x*(-) (otherwise the theorem is obvious). Clearly x*(t) < t.

Hence by Lemma 5.5 there exists m0 such that x*(mo) = t. Since gm
is logarithmically linear in x < mo, f and gmo can cross at most twice

in (O,m0 ). If there are two such crossings, then since g crosses f

from below at t, the other crossing point x, satisfies xI < t. If

there is only one such crossing (at t by choice of mi0 ), let x, = 0.
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Then in either case,

< gm 0(X), 0 < x < x, or t < x < m0f (x) (5.3)

gmo(X, x, < x < t or x > mo.

Let -•x) = a + pC(x), where [ = [(mo) - a(X)]- end a = -
0

Then X[t,,) (x) - t(x) changes sign with f(x) - g m(X) , and consequently

[X t•(x) - •(x) If~x (xW < gO.I (5.4)

Integration on x from 0 to yields

00 Co

S f(x)dx < S g_ (x)dx.
t to0

gmo(X)(X)

0 ___ I I O

Figure 5.1

INI

Figure 5.2 •
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Theorem 5.5. Inequality (5.2) is sharp.

Proof. In case v < C(t) the theorem is obvious; in case v > •(t),

equality is attained by the distribution degenerate at v. This degenerate

distribution can occur in many ways as a limit of distributions with PF 2

densities. 1

Corollary 5.6. Let f be a PF 2 density such that f(x) = 0, x < 0,
t

and such that S f(x)dx = p. If C is a function continuous and strictly
0

increasing on [0,00), then

C(x)f(x)dx > inf S C(x)gm(X;Cm)dX, (5.5)
00~ 000 m~t O

where for each m > t, cm is uniquely determined by

t
Sgm(x;cm)dx = p. (5.6)

0

Proof. G m(t;c) is strictly increasing in c (see the proof of Lemma 5.3),

lim Gm(t;c) = 1 and for t < m, lim G m(t;c) = 0. Hence (5.6) has a
niu 00 cc m a (
unique solution c m for each m > t and pe(0,l).

00

Consider now the case that C(t) Ž v = 5 C(x)f(x)dx. Let mO be
0 0

as defined in the proof of Theorem 5.1. Then by (5.4), Gm (t;bm) _ F(t)
0 0

G m(t;c m ) so that Gm (x;b_ < G_ (x;cm ) for all x. This together
0 0 0 0 0 0

with monotonicity of C yields

Go 00 00SC(x)f(x)dx = C •(x)gO(X;bo)dX Ž S •(x)g (X;C )dx

inf S g (x;c,)dx.
M~t 0
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Next suppose that C(t) < v. Since, for fixed c, lir G (t;c) = 1,m~t m

it follows that lim c c o @. Since C is continuous at t,
CO ~ mlt OD

lir S C(X)gm(x;cm)dx = C(t) < S C(x)f(x)dx. i
mJt 0 0

Theorem 5.1 remains true if C is strictly decreasing rather than

increasing. In this case, the statements of the lemmas remain unchanged

and the proofs require only minor modifications. Inequality (5.4) is

replaced by

[X[O,t](X) W - t..x)][f(x) - gm(X)] 0 0,

where t(x) = a + P(x) and A = [f(xl) - C(mo)]-l, a = - 0(to)p. If

C is decreasing rather than increasing, the direction of inequality (5.5)

is reversed, and the infimum is replaced by supremum.

For Theorem 5.1, the continuity of C was used only for the applica-

tions of the Helly-Bray lemma in Lemmas 5.2 and 5.3. This condition can

be relaxed, as can the condition that C be strictly monotone. In parti-

cular, (5.2) holds if for some s > t, C(x) X[s,@O)(x) (i.e., if v is

a percentile).

We remark that for t > v,

f Wt) gt(t)' (5.7)

This inequality follows from arguments similar to those advanced in the

discussion preceding Lemma 5.5. Further bounds for densities will appear j
in a forthcoming paper by the authors.

Note that gm is not PF 3. This means that in case f is PF 3 ,'

inequality (5.2) is not sharp, but can be improved.



67

6. SGME NUMERICAL COMPARISONS.

Extensive tables for various bounds of Sections 3, 4, and 5 that

have no explicit expressions are given in Barlow and Marshall (1963).

We present here some numerical results in the form of graphs, and make

comparisons with several other bounds, which are listed below:

(1) If F(O-) = 0, F is concave on [0,0) (i.e., the density f

is decreasing on [0,-)), and Ll = 1, then an upper bound for 1 - F(t)

due to Camp (1922) and Meidell (1922) is given by (2.7).

(2) If f is unimodal (more generally, if F is convex on [O,m]

and concave on [m,-o) for some unknown m), and tl = 1, then

1, 0o<_t< 1

1 - F(t) 2t-1 - 1, 1 <_t < 3/2 (6.1)

i/2t, t > 3/2.

This bound follows from the general theory given by Mallows (1962) and was

communicated to us by Prof. Mallows. Inequality (6.1) may be proved using

an appropriate modification of the method illustrated by Example 2.2

assuming first that the location of the mode is known.

(3) In case F(0-) = 0, tl = 1 and L2 is also known, the following

upper and lower bounds for 1 - F(t) are consequences of results given

by Chebyshev (1874):

1, 0< t <1

1 - F(t) < t-1 1 <_t <_•L2 (6.2)

(V2 ")/[12 - 1 + (t - >2 t V
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(1 t)I/[(,2-1) + (1-t) 2], o <t <

1 tF(t) (6.3)

0, t_>tl.

(4) By incorporating the hypothesis of (1) that F is concave

on [0,-), Chebyshev's results (6.2) and (6.3) have been improved by

Royden (1953), as follows:

1 - t/2, 0o<_t <l

1 - F(t) < (2tY 1 < t <3/4 (6.4)
4(3ýL2 - 2t)/9V, 3P 2/4 < t < L2

3112 - 4 216a2( - 1)

4(3a - 4a) + 3L2 Oa32 _ 4a) + 32 t

(2 t) 2 /(311 2 - 2t), 0 < t <2

1 - F(t) > (6.5)

0, t>2.

Assuming that il= 1, the graphs of Figure 6.1 give upper bounds

on 1 - F(t) in the cases of: general F(1.2); unimodal f(6.1);

IHR F(3.10); PF2 f(5.4). Recall that f is PF 2 implies both that

F is IHR (Barlow, Marshall, and Proschan, 1963), and that f is unimodal

(Schoenberg, 1951). However, IHR distributions need not have unimodal

densities (Barlow, Marshall, and Proschan, 1963).

Figure 6.2 again gives upper bounds for 1 - F(t) with •i = 1.

Here Markov's inequality (1.1) is given together with the improvements

in case f is decreasing (2.7), and in case F is DHR (3.13). We
r

recall that F is DHR implies that F is concave (f is decreasing).
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Figures 6.3 (a,b, and c) show the upper and lower bounds of Chebyshev

(6.2), (6.3) together with their IHR improvements given in Corollary 4.2

and Theorem 4.3. The striking improvement in the IHR case with 12 = 1.8

is partially explained by the fact that if F is IHR with p, = 1 and

= 2, then F is exponential.

Figure 6.4 for 3l = 1, '2 = 3 shows the sharp upper and lower bounds

of Chebysnev ((6.2),(6.3)), their improvements in case f is decreasing

(F is 2ona-e) on [0,oo), ((6.4),(6.5)), and their further improvements

in caoe ` is DHR, given in Theorems 4.5 and 4.6.

1.0

0.8-

0.6-

MARKOV

0.4-

PF2

0.2- UNIMOO

0.5 1.0 1.5 2.0 2.5 3.0

Figure 6.1 Upper bounds for 1 - F(t) ( = 1)
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1.0

0.3-

0.6
f MARKOV

0.4-
- • DECREASING DENSITY

0.2

0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 6.2. Upper bounds for 1 - F(t) (I = i)

1.0C

0.8

0.6 - III.

HESYSHEV

0.4

CHEBYSHEV

0.2

0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 6.3a. Upper and lower bounds for 1 - F(t) (l = i11 2 = 1.2)
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0.81

CHEGYSHEV

0.6-

INN

0.4-

0.2-
CHEBYSHE

0 o0 1.0 1. 2.0 2.5 3.0

Figure 6.3b. Upper and lower bounds for 1 - F(t) (ji =I'2 = 1.5)

1.0

0.8

HEBYSHEV

0.6

. IHR

0.4- INN

0.2
CHEIYSHEV

0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 6.3c. Upper and lower bounds for 1 - F(t) (pI = 1"&2 = 1.8)
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1 .0

0.8
CHEPSYSEV

0.6

0.4

0.2

CNEAYSHEV
F CONCAVE

0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 6.4 Upper and lower bounds for 1 - F(t) (ILl = 1'12 =

I
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7. SOME R34ARKS ON GENERALIZATIONS.

The arguments of this paper which depend on convexity properties

of log[l - F(x)] have been in several instances illustrated in Section 2

assuming convexity properties of F itself. This suggests that the two

theories can be unified by appropriate generalizations, and in this

section we indicate how this can be done.

A central role in the theory of distributions with monotone hazard

rate is played by the exponential distribution. The simultaneous

importance of the exponential function and the log function (which appears

in the definition of IHR) suggests the following

Theorem 7.1. Let G be a distribution function with G(O-) = 0,
Co

suppose that the support of G is an interval, and let S [1 - G(x)]dx = 1.

1 O-
Then H(x) = (1 - G)- (x) is defined for all x satisfying 0 < G(x) < 1.

If H(l - F(x)) is convex, F(O-) = 0, and t < jl = S [1 - F(x)]dx, then
0-

1 - F(t) >1 1 - G(t/pl) . (7.1)

The inequality is reversed if H(l - F(x)) is concave.

Similar results can be obtained in case il is replaced by the

expectation of an arbitrary increasing function. Inequality (7.1) can

be proved using the method of Example 2.2; it is sharp, with equality

attained by the distribution G(x/.l).

Inequality (7.1) is to be compared with (3.8), in which case

G(x) = 1 - e-x Choosing G(x) = x/2, 0 < x <•2, and assuming
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H(l - F(x)) is concave, one obtains the first bound of (2.7) with

r=1.

The direct proof given for (3.10) actually utilized only the

condition that x log[l - F(x)] _> t-I log[l - F(t)], x < t, which

is satisfied, e.g., by IHR distributions. Let lx(.) be a strictly

decreasing continuous function on [0,1] (in particular, we may taket

Ox(u) = x-1 log u), and suppose that fp(z) = S tCFkz)dx is continuous.
0

Let f(x) = Ox(l - F(x)).

Theorem 7.2. If S xdF(x) = < 1 , if p(x) <V(t), 0 < x < t, and
0-

if p(O) > •i -> p(-)' then there exists a unique z0 satisfying T(zo) =11.

For z0 so defined,

1 - F(t) <_ylt l(zo). (7.2)

The proof of (7.2) is essentially the same as the direct proof given

for (3.10).

if iol(zo) 1 1 and 0xl(zo) is decreasing in x, the distribution

0-l(z), x < t

1 - G(x) =

0, x>t

attains equality in (7.2).

As previously indicated, (7.2) reduces to (3.10) with r = 1 in

case x(u) - x- log u; the condition )(0) 2_ I q() is satisfied

when t p If Ox(u) O N(u) for all x, (7.2) reduces to (1.1) with
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r = 1. With *x(u) = (1 - u)/x, T(x) - f(t) becomes x'1 F(x) < t- 1 F(t),
x

x < t, which is true if F is convex in x < t, and (7.2) reduces to

(2.4) with r 1 1. Again the condition ((O) > ] _ •(-o) is satisfied

when t > p



76

BIBLIOGRAPHY

Barlow, R. E., Marshall, A. W., and Proschan, F. (1963). Properties

of distributions with monotone hazard rate. To appear in Annals

of Math, Stat., 34.

Barlow, R. E., and Marshall, A. W. (1963). Tables of bounds for dis-

tributions with monotone hazard rate. To appear as Boeing

Scientific Research Laboratories Document Dl-82-0249.

Camp, B. H. (1922). A new generalization of Tchebycheff's statistical

inequality. Bull, Amer, Math, Soc., 28, 427-432.

Chebyshev, P. L. (1874). Sur les valeurs limites des int6grales, J.

Math, Pures et Appl., (2) 19, 157-160.

Frxchet, M. (1950). Gen~ralites sur les probabilities., aELements aleatoires.

(2nd ed.) (Borel Series, Traite" du calcul des probabilite's et de ses

applications, Div. I, Pt. III, Vol. 1) Gauthier-Villars, Paris.

Gauss, C. F. (1821). Theoria combinationis observationum, Werk (1880) 4,

10-11 (Goettingen).

Karlin, S., Proschan, F., and Barlow, R. E. (1961). Moment inequalities

of Polya frequency functions, Pacific J. Math., 11, 1023-1033.

Karlin, S. and Novikoff, A. (1962). Generalized convex inequalities,

Technical Report No. 17, Dept. of Statistics, Stanford Univ. (NSF

Grant 16319). To appear in Pacific J. Math.

Krein, M. G. (1951). The ideas of P. L. Chebyshev and A. A. Markov in

the theory of limiting values of integrals and their further develop-

ment. Uspehi Mat, Nauk (N.S.) 6 N. 4 (44), 3-120; A.M.S. Translations

Series 2, 12 (1959) 1-121. .



77

Lo~ve, M. (1960). Probability Theory (2nd ed.) Von Nostrand,

Princeton, N. J.
I.

Mallows, C. L. (1956). Generalizations of Tchebycheff's inequalities.

J. Roy. Statist, Soc. Ser. B, 18, 139-176.

Mallows, C. L. (1962). A generalization of the Cebysev inequalities.

Technical Report, Dept. of Math. Stat., Columbia Univ. (NSF-G14146).

Markov, A. A. (1898). On the limiting values of integrals in connection

with interpolation, Zap. Imp. Akad. Nauk..*z, - Hat. Otd. (8) 6;

No. 5 (pp 146-230) of Selected papers on continued fractions and the

theory of functions deviating least from zero, OGIZ, Moscow-Lenningrad,

1948 (in Russian).

Marshall, A. W. and Olkin, I. (1961). Game Theoretic proof that Chebyshev

inequalities are sharp. Pacific J. Math. 11, 1421-1429.

Meidell, B. (1922). Sur une problhme due calcul des probabilites et lee

statistiques mathematiques, C. R. Acad. Sci. 175, 806-808.

Narumi, S. (1923). On further inequalities with possible application to

problems in the theory of probability, Biometrika. 15, 245-253.

Schoenberg, I. J. (1951). On P6lya frequency functions, J. d'Analyze

Math. 1, 331-374.


